Hydrogen Production by the Steam Reforming of Bio-Ethanol over Nickel-Based Catalysts for Fuel Cell Applications
Issue:
Volume 6, Issue 3, May 2017
Pages:
28-38
Received:
7 June 2017
Accepted:
21 June 2017
Published:
20 July 2017
Abstract: The bio-ethanol steam reforming over nickel-based catalysts when the temperature is within the range of 700 to 800 K is studied for fuel cell applications. The effect of operating conditions such as the temperature, space time, water-to-ethanol molar ratio, and oxygen-to-ethanol molar ratio on the product distribution is evaluated. The water-gas shift reaction is examined in the reforming process. Adjusting feed ratios to favor carbon removal from the surface is discussed in detail. It is shown that a nickel-supported-on-alumina catalyst completely converts bio-ethanol and high hydrogen yields are obtained. High temperatures and water-to-ethanol ratios can promote hydrogen production. There is no evidence that the water-gas shift reaction occurs over nickel-based catalysts. Carbon formation can be minimized by using high water-to-ethanol ratios. The presence of oxygen in the feed plays a favorable effect on the carbon deposition, but the carbon monoxide production is not reduced. There are several reaction pathways that could occur in the bio-ethanol steam reforming process, and the catalyst produces ethylene and acetaldehyde as intermediate products. The region of carbon formation depends on the temperature as well as the water-to-ethanol and oxygen-to-ethanol molar ratios. Finally, an overall reaction scheme as a function of temperature is proposed. The best catalysts appear to be those that are sufficiently basic to inhibit the dehydration of ethanol to ethylene, which subsequently polymerizes and causes coke formation.
Abstract: The bio-ethanol steam reforming over nickel-based catalysts when the temperature is within the range of 700 to 800 K is studied for fuel cell applications. The effect of operating conditions such as the temperature, space time, water-to-ethanol molar ratio, and oxygen-to-ethanol molar ratio on the product distribution is evaluated. The water-gas sh...
Show More
Review of 12 Principles of Green Chemistry in Practice
Anita Ivanković,
Ana Dronjić,
Anita Martinović Bevanda,
Stanislava Talić
Issue:
Volume 6, Issue 3, May 2017
Pages:
39-48
Received:
16 June 2017
Accepted:
4 July 2017
Published:
26 July 2017
Abstract: This paper provides an overview of aplicability 12 principles and future trends of Green Chemistry. Green or Sustainable Chemistry is a term that refers to the creation of chemical products and processes that reduce or eliminate the use and production of harmful substances. They are used exclusively chemicals and chemical processes that do not have negative consequences for the environment. It is based on twelve principles that can be used to initially create or recreate molecules, materials, reactions and processes that are safer for human health and the environment. The processes of the Green Chemistry that have been developed to date include almost all areas of chemistry, including organic, inorganic, biochemistry, polymer, toxicology, environmental, physical, technological, etc. Through the several prevailing trends of the green program such as catalysis, biocatalysis and the use of alternative: renewable feedstock (biomass), reaction media (water, ionic liquids and supercritical fluids), reaction conditions (microwave irradiation) and new synthetic pathways (photocatalytic reaction), the dual goals – environmental protection and economic benefit can be achieved. This article shows examples of the prevailing trends in ways that Green Chemistry reduces the impact of chemical processes and technologies on the environment.
Abstract: This paper provides an overview of aplicability 12 principles and future trends of Green Chemistry. Green or Sustainable Chemistry is a term that refers to the creation of chemical products and processes that reduce or eliminate the use and production of harmful substances. They are used exclusively chemicals and chemical processes that do not have...
Show More