Dynamic Simulation of Fuel Cell Driven by Wind Turbine Using Simulink / Matlab Approach
Samuel Sami,
Cristian Cango,
Edwin Marin
Issue:
Volume 9, Issue 1, March 2020
Pages:
1-15
Received:
27 February 2020
Accepted:
9 March 2020
Published:
17 March 2020
Abstract: A dynamic numerical simulation has been carried out using the Matlab Simulink tool for simulation of a hybrid Power generation system using wind turbine (400w) and a fuel cell of Proton Exchange Membrane (PEM). The system has a battery banc to store excess energy not consumed by the load, and an electrolyzer when wind power is unavailable. The numerical model has been developed through blocks of Simulink that contains the data and the system parameters, considering the different elements and characteristics of the different elements of the system. The hybrid system supplies at least 3 hours a day, at 2000 Whr / day. Experiments were conducted using PEM fuel cell type to collect different characteristics of the hybrid system. It was found that the hybrid system efficiency can be increased using more fuel cells in series and the active area of the battery. The numerical model that has been represented in Simulink / Matlab and was validated with the experimental data obtained after the fuel Cell setup. Good agreement has been obtained between the experimental data and the model presented.
Abstract: A dynamic numerical simulation has been carried out using the Matlab Simulink tool for simulation of a hybrid Power generation system using wind turbine (400w) and a fuel cell of Proton Exchange Membrane (PEM). The system has a battery banc to store excess energy not consumed by the load, and an electrolyzer when wind power is unavailable. The nume...
Show More
Simulation of Power Generation from Vibration of Railway Track
Fiona Mercy Akello,
Lucky Ugochukwu Adoh
Issue:
Volume 9, Issue 1, March 2020
Pages:
16-22
Received:
15 March 2020
Accepted:
30 March 2020
Published:
13 April 2020
Abstract: Ethiopia has a small percentage of its population accessing electricity with some power utilized by its transportation sector; there are frequent power outages that slow down economic activities such as trade and railway transportation. From this previous statement, it is clear that the demand for energy is significantly increasing and there is too much dependability on the current energy source. With the development of sustainable energy technology in the world today, this problem can be alleviated, while utilizing component vibration in railway infrastructure. The aim of this study was to estimate energy generation potential from the vibration of a railway track induced by a passing train using a two degree of freedom oscillator. Data was collected; energy harvesting system was modeled and simulated. Based on the result, the system produces enough energy to power communication and signaling equipment on the track. The optimum parameters: mass of 1 kg, a spring stiffness of 6 N/m and a damping coefficient of 4 Ns/m of the energy harvester were determined using sensitivity analysis. The cumulative mechanical power harvested by the inter-city-125 train at a speed of 195 km/h was calculated to be 224.56 W. Therefore, the energy demand of the communication and signaling equipment of the train track can be achieved using vibration energy harvesting system by installing the number that meets the demand.
Abstract: Ethiopia has a small percentage of its population accessing electricity with some power utilized by its transportation sector; there are frequent power outages that slow down economic activities such as trade and railway transportation. From this previous statement, it is clear that the demand for energy is significantly increasing and there is too...
Show More